Analysis of Task Scheduling in Hadoop MapReduce Framework

Kamalakant Bawankule'
Computer Science and
Engineering,
MNNIT,Allahabad

Abstract— There are many open source platform available
for storage and computation of big data, hadoop is one of
them. Hadoop can be used for implementation of programming
model like MapReduce which is very efficient for processing
the shorter jobs with low response time. MapReduce
framework, which is popular for computation of big data
in parallel, distributed across the cluster. In our experiment
we are analyzing scheduling of each task in MapReduce[11]
framework with the help of two applications Word count and
grep on FIFO (first in first out) scheduler, Fair scheduler and
capacity scheduler. The jobs are submitted simultaneously for
execution to analyze the task scheduling. We tried to varied
the workload as well as Map Tasks on each slaves to observe
the effect on tasks scheduling. Experiment has been carried
out on text files of 1GB, 2GB and 5GB with variations in
Map Tasks as 1, 2, 3, 4 and 5 on each slave nodes, before
executing the jobs. In the execution, first we submit Grep
followed by Word Count in all the above cases for different
workloads with different Map Tasks. We observed that in
FIFO scheduler jobs are submitted as per the policy first
in first out,the jobs that are submitted first will be executed
first. In Fair scheduler and Capacity scheduler all the jobs
are given the equal share of resources, means both the job
executes simultaneously. Observation of results can help us to
conclude that in all the three schedulers i.e FIFO schedeuler,
Fair schedeuler, and Capacity schedulers, FIFO scheduler
takes more turnaround time for bigger data size where as it
outperforms for the shorter jobs. However, now a days much
more big data applications are developed with MapReduce
model which requires low turnaround time for the larger jobs
as well as for shorter jobs. As a result, it becomes necessary
to verify the performance of MapReduce, especially for larger
jobs which is more popular now a days and which has
attracted more and more attentions from research, industry
and academia.

Keywords: Hadoop, MapReduce Performance, HDFS, Sched-
uler, scheduling, FIFO, FAIR and CAPACITY.

I. INTRODUCTION

Big data can help to make the efficient and strategic
decisions. There are many source available today from which
data is generated. Every day google [14] generates 2.5 quin-
tillion bytes of data but still the growth in data is increasing.
Facebook[5] process the data using Hadoop, where it users
generates 500+ terabytes of data each day. Facebook[5] has
a single largest hadoop system which can store and process
100 petabytes of data which is one of the biggest cluster in
the world. Various sources like social media, news channels,
scientific labs, meteorological department generates huge
amount of data every day. This big data requires most

Anil Kumar Singh?
Computer Science and
Engineering,
MNNIT,Allahabad

Rupesh Kumar Dewaang?
Computer Science and
Engineering,
MNNIT,Allahabad

effective storage and efficient analysis techniques which can
bring some knowledge out of it which is a great challenge
today for the data world. Analysis of these cases brings
up a challenge in the improvement of Big Data platforms.
MapReduce is such a programming model which is most
popular, where parallel and distributed computing can be
carried out which is adaptive and it can be further scalable
as per the user requirement[9].

Big Data varying in the size of petabytes can be processed
by an open source platform Apache Hadoop[1]. Hadoop
an open source project developed by Doug Cutting owner
of Apache Lucene. It can be used for big data storage
and further for batch processing across the distributed clus-
ters of commodity hardware. It is very much more adap-
tive and scalable. Hadoop can be scaled as per the user
requirement[12]. Data are stored in blocks which are further
replicated at different locations with The high availability
of data around the cluster nodes.It has two very important
components HDFS(Hadoop distributed file system) [1][10]
and MapReduce[9]. Hadoop distributed file system as the
first component provide the storage of big data in blocks
replicated across the cluster where as MapReduce as a
second component provide efficient, parallel and distributed
computation of Big Data.

Implementation of MapReduce on Hadoop followed by
the master-slave architecture. There are many number of
slaves connected with a single master node. Monitoring of
slaves and fulfilling the resources requirement is carried
out by the master node. Aliveness of slave nodes in the
cluster are monitored periodically after some interval time.
Further MapReduce divide the job into various tasks for
effective and efficient processing.Two types of tasks i.e "Map
Task’ and ’Reduce Task’ helps to process the big data.
Scheduling of tasks on the cluster nodes plays a very vital
role for the improvement in turnaround time, and resource
utilization [23] [7][21]. In previous studies several issues
has been communicated related to MapReduce scheduling.
Some issues were still not optimized by most proposed
promising MapReduce schedulers which further leads to poor
performance. So a significant research can be carried out
to improve performance of MapReduce by improving task
scheduling techniques.[9][23][20][7].

Today’s growing trend in processing Big Data using
MapReduce motivated us to analyze different scheduling
techniques with various workloads. In the following sec-

tions paper provide the detailed overview of related work
in section II. In the section III we explained the existing
MapReduce Task scheduling mechanism, followed by sec-
tion IV which gives an overview of existing scheduling
of tasks in MapReduce. Section V provides the detailed
experimental setup. In Section VI evaluates the performance
of existing schedulers such as FIFO, Fair, and Capacity
based on experimental results. In Section VII, results for the
evaluation are shown in tabular format with the respective
graphs. In the last section VIII we conclude the paper with
some of research directions.

II. RELATED WORK

Data sets size are increasing with increase in use of
internet, where the data is collected from various sources like
digital photos, social media, online transactions,etc. Massive
amount of data collected may be structured and unstructured
formats. Computation of big data can be carried out with
the help of open source platform Hadoop MapReduce. To
process jobs in MapReduce it is divided into number of
task in series. Scheduling of task in MapReduce model is
key factor and important aspect need be considered. Better
techniques can be used to schedule job and improve the
response time of the cluster.

There are many techniques for scheduling task in Hadoop
Mapreduce. FIFO scheduling technique is a default where
job coming first for execution in queue has the highest
priority. FIFO scheduling has disadvantage were longer jobs
are scheduled before shorter jobs which leads to starvation.
Fair Scheduling technique share all the resources across the
cluster nodes equally for all jobs. Capacity scheduling tech-
nique minimizes the resource utilization across the cluster
node, which was introduced by Yahoo.

Many authors had presented the review papers related
to job scheduling techniques in Hadoop MapReduce for
big data processing. Authors[20] reviewed and tested the
existing scheduling techniques in Hadoop MapReduce with
their advantage and disadvantage. [18] presented a survey on
scheduling algorithms in Hadoop MapReduce. Authors[23]
from university of California presented a techniques called
as LATE Longest approximate time to end which improve
performance of MapReduce computation model in heteroge-
neous environment. Authors[6] [19] proposed a techniques
to improve the MapReduce performance in heterogeneous
environment by improving the speculative task execution.
Facebook[22] provide a scheduling technique, to improve
performance and response time by delaying some task, called
the technique as Delay scheduling. In deadline scheduler [16]
user imposes the deadline constraints before job scheduling
to increase system utilization. To improve resource utiliza-
tion many authors [17][15] proposed different techniques
to complete scheduling of jobs. Matchmaking scheduling
author[13], proposed a technique to which mark every node
in the cluster by the locality marker, further ensuring that
every node got an equal chance to hold a task which is local.
These above scheduling techniques improved scheduling,

Metadata ops

Metadata (Name, replicas, ..):
J/home/foosdata, 3, v

Datanodes

Datanodes

Aol O
1y

Blorks

'l Write
Rack 1 Rack 2

Fig. 1: Architecture of Hadoop Distributed Filesystem [2]

O Replications)

[File stored in HDFS s datablocks |
DataBlocks / 1./ \ \l \l
Physical-HDFS [a [b [c | d [fer
128ME =8MB 1=28ME 1=Z8MB

IMB

Data Blocks Boundaries

(S TSNS T TN - - - - ™S I S I B B REE BT AT T I I I I e |

File processed as input splits which are composed of records

map(Ks,V —list{Kz, V2)
(2 He(V2)) — yreducelK3.V3)
InputSplits
{Logical- MapReduce)

Fig. 2: Blocks in HDFS[4]

with improved data locality, resource allocation and cluster
resource utilization.

III. MAPREDUCE TASK SCHEDULING MECHANISM

In this section we explain in details the mechanism used
by Hadoop to schedule the work across a cluster. MapRe-
duce implementation in Hadoop closely resembles Googles
MapReduce implementation[11]. Hadoop open source plat-
form follows master-slave architecture. A single master con-
trols number of slaves. Input files in hadoop resides in HDFS
(Hadoop distributed file system) throughout the cluster. The
input is further divided into the even sized chunks of size
64MB, 128MB and 256MBJ1].

The size of chunks can be modified by the user as per
their requirement. Each Mapreduce job are further divided
into series of tasks. There are two type of task "Map Task’
and ’'Reduce Task’. Each input chunks are processed by map
task, where output of map task is a key-value pairs which act
as an input to the reducer. Map outputs splits into a groups
based on key. These keys and value are intermediate data
copied by the reducers in copy phase. Data further sorted by
key in sort phase where as a reducer is applied on data to
reduce it and produce the output in key-value pairs.

Hadoop executes several maps and reduces simultaneously
on each slave. By default two map task and one reduce task
is executed to overlap computation and I/O. Each slave node
communicate with master node to update the empty task
slots available with them. Scheduler assigns the task if the
slave node update regarding the empty slots. Response time

Mastar Node SlaveNode:r SlaveNodez
Task Tracker | Task Tracker | | Task Tracker |
-—'--""'-'-__d-‘_—_,_v__.-—'-'-"""''_---‘7
MapReduce Layer | —1
Job Tracker
P T TR ETY e P S -
HDES Laver Mamen ode
ye """\._‘___"'h_-_‘_-—\
Hﬁ_“""‘-——a P,
Datan ode Datanode

Fig. 3: High Level Architecture of Hadoop[3]

Input Key Value Pairs

Data Storage 1 Data Storage n
Y Y

map

Input Key Value Pairs

map

(Key 1, values) (Key 3, values) (Key 1, values) (Key 3, values)

Y Y

‘ Aggregates intermediate values by output key

(Key 1, intermediate (Key 2, intermediate
values) values)
Y Y .

(Key 3, intermediate
values)

reduce reduce reduce

l l l

final key 1
values

final key 2
values

final key 3
values

Fig. 4: MapReduce Computation[23]

play a very vital role for short jobs where a user waits for
instant answer for example queries on debugging of log data,
counting, monitoring and for business intelligence. Major use
MapReduce computation framework is carried out for Short
jobs.

IV. EXISTING SCHEDULING TECHNIQUES

Schedulers are used to schedule the task and acquire
resources from the cluster to execute the task as per the
requirement. Hadoop has three default schedulers FIFO,
Capacity, and Fair Schedulers. Different schedulers has their
own advantage and disadvantage as per the scheduling policy
they adopts. We will further explain the default schedulers
in details with their advantage and disadvantage. In the
past plenty of research has been carried out to improve the
performance of hadoop schedulers[23] [7][22][16] and they
are further classified as homogeneous schedulers and hetero-
geneous schedulers, out of which some of them are static and
some of them are dynamic. There are very few schedulers
which work well in homogeneous environment and in het-
erogeneous environment both. In homogeneous environment

hadoop assumes that computing nodes in the cluster are
same computing capacity, where as in heterogeneous[23] en-
vironment the computing nodes in the cluster have different
computing capacity. These scheduler are also classified based
on their scheduling strategies such as static scheduling and
dynamic scheduling. In static scheduling job is allocated to
the processor before the execution of the program, where as
in dynamic scheduling it allocates the job to the processor
at the time of execution of the program.

A. First In First Out Scheduler

Application are submitted to the queue in particular order,
FIFO[20][12] scheduler run the application as per the sub-
mission (First in first out) manner. Request for resources are
made for first application, once its completed, the request of
next application are completed available in the queue, which
is continued further. FIFO scheduler is simple to understand
where as it does not require any configuration, it is not
feasible to use in shared cluster as it has many disadvan-
tages. Smaller applications need to wait for resources when
resources are been used by larger applications. When a new
application or job arrives, the Job Tracker takes the job which
is submitted first in the queue which is irrespective of size
of the job and the priority.

1) Advantages: 1. FIFO scheduling technique is the most
efficient and simplest among all default the schedulers. 2.
The jobs or applications are executed as per the order of
their submission.

2) Disadvantages: 1. FIFO scheduling is non pre-emptive
scheduling technique. This techniques is not feasible for the
interactive jobs. 2. A major drawback is bigger applications
or jobs will acquire all the system resources delaying the
execution of short jobs running behind it. 3. FIFO Scheduler
does not balance the resource allocation across the cluster
between long running jobs and short running jobs. 4. Its
another drawback is data locality is not considered and
reduced, it creates starvation of jobs.

B. Cacpcity Scheduler

A Scheduler which allows multiple-tenants to share a
large cluster securely between organization with a minimum
capacity guarantee. Applications allocates resources in a time
interval manner as per the allocated capacities[18][6]. It
maximizes throughput of the cluster with better utilization
of the resources among the multi-tenant in the cluster. The
cluster is divided into different organization, where each
organization has their own separate private set of computing
resources which are sufficient to meet the organization’s SLA
in peak condition. It has poor utilization with difficultly in
managing independent cluster overhead one per organization.
Organization shares the cluster in cost effective manner with-
out creating their own private clusters which is economically
beneficial to all organization participating in it. It provides
the benefit that any organization can use the excess resources
available which not being used by remaining organizations.
It provides elasticity to the organizations economically in a
cost-effective manner.

1) Advantages: 1. Capacity scheduler maximizes through-
put of the cluster with better utilization of the resources
among the multi-tenant. 2. Use of unused resources among
the jobs in the cluster within the queues. 3. It provide support
the hierarchical queues feature, with extended elasticity.

2) Disadvantages: 1. 1t is one of the complex schedulers
among all the three schedulers. 2. It has complexity in
selecting the proper queue. 3. Some limitations in regards
of pending jobs, maintaining fairness and stability among
the user in the cluster.

C. Fair Scheduler

Fair[8] scheduling policy takes care of assigning resources
to the jobs, where all the jobs in the cluster gets an average
equal share of resources to complete the job. Single job
running in the cluster use entire resources of the cluster.
When multiple jobs are submitted, they are provided the free
task slots, so each can get roughly same amount of CPU
time. It share the resources equally which helps short job to
finish it in reasonable time without starving the long jobs.
Fair scheduler provides the best policy to share the cluster
among the multiple users[15]. This policy can work with job
priorities where it use priorities as the weight to determine
the fraction of total compute time of each job. The scheduling
policy maintains the jobs into the pools, where resources
are divided equally among the pools. Each user has separate
pool, as each one can share the equal share of resources in
the cluster. In every pool, jobs can be scheduled by on the
cluster using two scheduling policies Fair and FIFO as per
the user recommendation. Like capacity scheduling policy
fair scheduler assigns guaranteed minimum shares among the
pools. If a pool has any jobs, it gets the minimum shares,
but if the pool does not require the amount of resources
available, then excess is shared among other pools . If user
do not get the minimum share which is required for some
period of time, it will preempt the jobs of other pools. Fair
Scheduler provides the facility to limits concurrent running
jobs per user and each pool. This is very helpful when
user submits many jobs simultaneously[20]. When multiple
concurrent jobs are running in the cluster it may be possible
that intermediate data can occupy the complete disk space
on the cluster which needs to be monitored. Limiting job
submission in fair scheduler help the load balancing in the
cluster where new submitted job will wait for earlier job
to get complete. Execution of jobs for each user or pool
is selected as per the priority assigned and based on their
submission. Fair scheduler is optimized in terms of load
balancing where job waits for some of the dependency on
the external service such as 10, web service and database
which can overload the cluster by too many maps or reduce
task running simultaneously.

1) Advantages: 1. Scheduler provides fair and dynamic
share of resources among the pools. 2. Very helpful in im-
proving starvation, where shorter jobs finishes first compared
o larger jobs. 3. It has a dynamic control over limiting
multiple jobs running across the cluster for each user and
each pool.

2) Disadvantages: 1. Fair scheduler configuration much
more complicated and complex compared to others. 2. The
policy does not consider the weight of each job, which
further create a unbalance performance for each pool ans
users 3. Limitation on concurrent running jobs across the user
and the pool, will be based on the availability of resources.

V. EXPERIMENTAL SETUP

Hadoop is a distributed open source platform deployed for
commodity machines. The framework is divided into two
part one for storage and other for parallel and distributed
computation. A open source platform hadoop can be used
by various operating system like linux, Mac-OS and many
others. But it is best supported in the linux platform. In
our experiment we installed hadoop on Ubuntu 18.04.1 LTS
operating system. To evaluate the performance of the existing
scheduler, we created a cluster of four machines with cluster
node configuration given below in the tables. Our cluster
consist of total four machine. Three of them work as worker
node i.e slaves and another machine act as a master node.
These machine are interconnected with each other through
the switch, all of them lay in the same network. Two node in
the cluster master node and slaves node has to manage the
complete cluster, by running Job Tracker and Name Node on
master node and Task Tracker and Data Node on slave node.
Nodes has Ubuntu 18.04.1 LTS as an operating system and
Open JDK 10.1 to run hadoop applications. Word count and
Grep application require java as necessary software to run
on the hadoop cluster. Hadoop 1.2.1 execution environment
was installed on the nodes for creating the cluster. Below
Table provide the detailed configuration parameters used for
hadoop. Detailed Configuration of each machine is shown
below in the tables :

TABLE I: Master Node

MasterNode Details
Operating system Ubuntu 18.04.1 LTS
RAM 12 GB
ROM 1TB GB
Processor Intel® Core™ i7-4790

TABLE II: Slave Node 1

Slavel Details
Operating system Ubuntu 18.04.1 LTS
RAM 8 GB
ROM 1TB GB
Processor Intel® Core™ i7-4790

TABLE III: Slave Node 2

Slave2 Details
Operating system Ubuntu 18.04.1 LTS
RAM 8 GB
ROM 1TB GB
Processor Intel® Core™ i7-4790

TABLE IV: Slave Node 2

Slave3 Details
Operating system Ubuntu 18.04.1 LTS
RAM 4 GB
ROM 1TB GB
Processor Intel® Core™ i7-4790

VI. PERFORMANCE EVALUATION

In the previous studies authors made a comparative
study of job scheduling techniques along the experimental
results[20]. Experiment is carried out for analyzing schedul-
ing of each task in MapReduce framework with the help
of two application Word count and grep. Analysis of task
scheduling is carried out on FIFO (first in First out) sched-
uler, Fair scheduler and capacity scheduler by executing
the jobs, Word count and Grep. The jobs are submitted
simultaneously for execution to analyze the task scheduling.
We varied the workload and Map Task on each slave for
the every job i.e 1GB, 2GB and 5GB text files and 1,2,3,4
and 5 Map Task. While executing the jobs, we submit Grep
followed by Word count in all the above case for different
workload and Map Task. When execution started we tried
to observe that the slave node executes the Map Task as per
the configuration. Also we tried to find out the effect on
the performance of the scheduler by varying the Map Task
and input sizes. For running default schedulers in hadoop
cluster need to do some configuration changes on master
node. By default execution of jobs can be carried out with
default scheduler FIFO. So to use another scheduler for the
execution of jobs we need to configure the scheduler. To
use Fair scheduler and capacity scheduler need to modify
configuration of schedulers in the contrib/fairscheduler and
contrib/capacityscheduler directory these are the jar file.

These jar file need to be copied in the classpath to use
the particular scheduler. For the performance evaluation of
the schedulers, we used two applications Word count and
Grep. These application in Hadoop MapReduce are taken
benchmark applications by many researchers to perform the
evaluations. Input to these application is a text files, where
word count application, count the number of occurrence of
words in the files and grep search application count the
occurrence of particular word in the files provided by the
user, which is mostly used for data mining.

Turnaround Time : Sum of total time required when job
submitted until the complete execution of the job .

TABLE V: Configuration parameters for hadoop

Parameters Details [20]
Block Size 64 MB
Interval of Heartbeat 3s
Reduce tasks per node 1
Replication factor 2

VII. TABULAR RESULTS

We tried to analyze performance of following schedulers,
FIFO scheduler, Fair scheduler, and Capacity schedulers by

running the Word count and Grep applications. We varied
different data sizes with variation in Map Task on each slave.
Result of experiment are given below in the table which
shows the Turnaround time/ Response Time in seconds for
different data size and different Map Task. We varied the data
size as well as Map Task for our experiment by configuring
the parameter “mapred.tasktracker.map.tasks.maximum” of
“mapred-site.xml” in all the clients (slaves). We observed
that in FIFO scheduler jobs are submitted as per the policy
first-in-first-out, the jobs that are submitted first will be
executed first. In Fair scheduler all the jobs are given
the equal share of resources, means both the job executes
simultaneously. Where as in capacity scheduler share are
divided but still one job needs to wait for other job to
complete.

We clarify our results by presenting the below three
observations.Our first observation for word count application,
where FIFO scheduler outperforms for shorter jobs of data
size 1GB and 2GB where as FAIR scheduler outperforms for
larger jobs of data size SGB followed by capacity scheduler.
Secondly in grep application fair scheduler outperforms in
all types of workload as it executes both the jobs provid-
ing the equal share of resources across the cluster. Third
and overall observation regarding improving response time
of MapReduce, increase in Map Task on slaves, decrease
overall execution time of jobs. Variation in Map Task can
be carried out as per the system configuration. For higher
configuration more Map Task can be assigned, where as to
lower configuration minimum Map Task can be assigned.
But it has a disadvantage of overloading the cluster with
maximum task failure and increase speculative executions.
These above experimental results help us to find the load
which can be berried by each slave node.

TABLE VI: Turnaround time in second for 1GB data

MapTask 1 2 3 4 5
FIFO 92 | 82 | 76 | 70 | 63
FAIR 93 | 84 | 79 | 73 | 66
CAPACITY | 93 | 86 | 82 | 75 | 68

TABLE VII: Turnaround time in second for 2GB data

MapTask 1 2 3 4 5
FIFO 158 | 127 | 103 | 91 | 80
FAIR 159 | 132 | 106 | 65 | 87
CAPACITY | 162 | 135 | 109 | 97 | 91

TABLE VIII: Turnaround time in second for SGB data

MapTask 1 2 3 4 5
FIFO 382 | 360 | 318 | 278 | 183
FAIR 374 | 359 | 290 | 238 | 177
CAPACITY | 378 | 364 | 294 | 242 | 179

| FIF3
| FAIR

Time [sec)

B CAPACITY

1 2 3 4 >
Map Tasks 1GB Wordcount

Fig. 5: Turnaround Time for 1GB Word-Count Application

180
160
T 140
120

_ 100 mFIFO

E g m FAIR

E " m CAPACITY
F 20
0
1 2 2 i "
—_— Map Tasks 2GE Wordcount

Fig. 6: Turnaround Time for 2GB Word-Count Application

450

350

—
8

250
200
150
100

50

B FFO
B FAIR

Time [sec)

B CAPACITY

1 2 3 4 5
> Map Tasks

5GB Wordcount

Fig. 7: Turnaround Time for 5GB Word-Count Application

100
90
Tso
70
60
'g 50 B FIFO
‘E 40 H FAIR
F s m CAPACITY
20
10
0
— 7 MapTasks 1GB Grep

Fig. 8: Turnaround Time for 1GB Grep Application

160
140

100
| FIFO

B FAIR
| CAPACITY

Time (sec)
e B8 & 8 8

3
Map Tasks 2GE Grep

Fig. 9: Turnaround Time for 2GB Grep Application

e

mFIFC
=
g m FAIR
£ B CAPACITY
E

> Map Tasks 5GB Grep

Fig. 10: Turnaround Time for SGB Grep Application

VIII. CONCLUSION

Scheduling jobs and managing resources in the cluster
is carried out with the help of schedulers. In big data,
processing of data is very important aspect which needs to
be considered to improve the performance of MapReduce,
which can be achieved by improving job scheduling tech-
niques. There are still many issues in processing big data
which need to be improved. Some of the issues to handle
big data has been communicated by designing variety of
schedulers. In this paper we present the comparative study
of schedulers like FIFO, FAIR and CAPACITY schedulers
with their drawbacks and advantages. Execution of jobs in
the cluster is managed by the schedulers by reserving the
resources like Memory, CPU, IO and user demands etc. By
observing the experiment results we can conclude the Fair
scheduler and Capacity schedulers can be used for larger
jobs where fair and equal utilization of resources is required.
Where as FIFO schedulers can be used for shorter jobs. Our
Overall observation regarding improving response time of
MapReduce is increase in Map Task on slaves, decrease
overall execution time of jobs. Variation in Map Task can
be carried out as per the system configuration. For higher
configuration more Map Task can be assigned, where as to
lower configuration less Map Task can be assigned. But this
has a disadvantage of overloading the cluster with maximum
task failure and increase in speculative executions. Finally

we can conclude that scheduler must be selected to schedule
the job as per the size of workload and based on system
configurations working in the cluster, to obtain early results
from the cluster nodes.

[1]
[2]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

REFERENCES

Apache hadoop. https://hadoop.apache.org/.

[21]

[22]

Jiong Xie, Shu Yin, Xiaojun Ruan, Zhiyang Ding, Yun Tian, James
Majors, Adam Manzanares, and Xiao Qin. Improving mapreduce
performance through data placement in heterogeneous hadoop clusters.
In Parallel & Distributed Processing, Workshops and Phd Forum
(IPDPSW), 2010 IEEE International Symposium on, pages 1-9. IEEE,
2010.

Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma, Khaled Elmele-
egy, Scott Shenker, and Ion Stoica. Delay scheduling: a simple
technique for achieving locality and fairness in cluster scheduling.
In Proceedings of the 5th European conference on Computer systems,
pages 265-278. ACM, 2010.

Hadoop file system archtecture. https.//bigdatapath.wordpress.com/2018/02/2F¥hdfiptei Zaharia, Andy Konwinski, Anthony D Joseph, Randy H Katz,

overview/.

Hadoop high level archtecture. https://www.dezyre.com/article/hadoop-
architecture-explained-what-it-is-and-why-it-matters/317.

Hdfs blocks. https://www.dummies.com/programming/big-
data/hadoop/input-splits-in-hadoops-mapreduce/.

How big is facebook’s data? https://techcrunch.com/.

Quan Chen, Dagiang Zhang, Minyi Guo, Qianni Deng, and Song
Guo. Samr: A self-adaptive mapreduce scheduling algorithm in
heterogeneous environment. In Computer and Information Technology
(CIT), 2010 IEEE 10th International Conference on, pages 2736-2743.
IEEE, 2010.

Dazhao Cheng, Jia Rao, Yanfei Guo, Changjun Jiang, and Xiaobo
Zhou. Improving performance of heterogeneous mapreduce clusters
with adaptive task tuning. [EEE Transactions on Parallel and
Distributed Systems, 28(3):774-786, 2017.

Ya-Wen Cheng and Shou-Chih Lo. Improving fair scheduling per-
formance on hadoop. In Platform Technology and Service (PlatCon),
2017 International Conference on, pages 1-6. IEEE, 2017.

Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data
processing on large clusters. Communications of the ACM, 51(1):107—
113, 2008.

Mohd Rehan Ghazi and Durgaprasad Gangodkar. Hadoop, mapreduce
and hdfs: a developers perspective. Procedia Computer Science,
48:45-50, 2015.

Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google
file system, volume 37. ACM, 2003.

Rong Gu, Xiaoliang Yang, Jinshuang Yan, Yuanhao Sun, Bing Wang,
Chunfeng Yuan, and Yihua Huang. Shadoop: Improving mapreduce
performance by optimizing job execution mechanism in hadoop clus-
ters. Journal of parallel and distributed computing, 74(3):2166-2179,
2014.

Chen He, Ying Lu, and David Swanson. Matchmaking: A new
mapreduce scheduling technique. In Cloud Computing Technology
and Science (CloudCom), 2011 IEEE Third International Conference
on, pages 40-47. IEEE, 2011.

Bernard ~ Marr. How big is google’s data?
https:/fwww.forbes.com/sites/bernardmarr/2018/05/2 1/how-much-
data-do-we-create-every-day-the-mind-blowing-stats-everyone-
should-read/, 2018.

Xiaoqgiao Meng, Jian Tan, and Li Zhang. Resource aware scheduling
in a distributed computing environment, December 1 2015. US Patent
9,201,690.

Quentin Perret, Gabriel Charlemagne, Stelios Sotiriadis, and Nik
Bessis. A deadline scheduler for jobs in distributed systems. In 2013
27th International Conference on Advanced Information Networking
and Applications Workshops, pages 757-764. IEEE, 2013.

Jorda Polo, Claris Castillo, David Carrera, Yolanda Becerra, Ian Whal-
ley, Malgorzata Steinder, Jordi Torres, and Eduard Ayguadé. Resource-
aware adaptive scheduling for mapreduce clusters. In Proceedings
of the 12th International Middleware Conference, pages 180-199.
International Federation for Information Processing, 2011.

B Thirumala Rao and LSS Reddy. Survey on improved schedul-
ing in hadoop mapreduce in cloud environments. arXiv preprint
arXiv:1207.0780, 2012.

Xiaoyu Sun, Chen He, and Ying Lu. Esamr: An enhanced self-adaptive
mapreduce scheduling algorithm. In Parallel and Distributed Systems
(ICPADS), 2012 IEEE 18th International Conference on, pages 148—
155. IEEE, 2012.

Mohd Usama, Mengchen Liu, and Min Chen. Job schedulers for big
data processing in hadoop environment: testing real-life schedulers
using benchmark programs. Digital Communications and Networks,
3(4):260-273, 2017.

and Ion Stoica. Improving mapreduce performance in heterogeneous
environments. In Osdi, volume 8, page 7, 2008.

	INTRODUCTION
	Related Work
	MapReduce Task scheduling mechanism
	Existing Scheduling Techniques
	First In First Out Scheduler
	Advantages
	Disadvantages

	Cacpcity Scheduler
	Advantages
	Disadvantages

	Fair Scheduler
	Advantages
	Disadvantages

	Experimental Setup
	Performance Evaluation
	Tabular Results
	Conclusion
	References

