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Abstract—This paper describes one method of research and 

synthesis of control systems with m-inputs and n-outputs by 

the output of the object by the gradient-speed method of 

Lyapunov vector functions. The task of the synthesis of the 

regulator and the observer is considered as a system that can  

provide the specified (desired) transition characteristics of a 

closed system. 
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I. INTRODUCTION  

The modern control tasks are characterized by the ever-
increasing complexity of the control objects, the 
requirements for stability and high quality in the context of 
multidimensionality of the system. 

The prevailing problem revolves around the creation of 
control systems that account for the object's output, while in 

practice only the state vector )(tx  is available for 

measurement, not the object's output )(ty . In this case, the 
state variables of the object themselves are not used in the 
control law, but their estimates obtained be using the 
observing device [1,2,3,4]. This in itself requires a control 
system to be built for the object output in the form of modal 
control [1,5]. The modal control on the output of an object 
implies complex and ambiguous calculations on the 
characteristic polynomial [6,7] of a closed system with a 
controller and an observer and the transformation of the 
matrix of the object to a triangular or block-diagonal form. 
At the same time, the non-special matrix of canonical 
transformations is determined by the eigenvectors of the 
object's matrix, and the roots of the characteristic polynomial 
of a closed system by the combination of the roots of the 
characteristic polynomial of the system with a model 
controller and the state numbers eigenvalues [1, 3, 6]. 

 

II. MATERIAL AND METHODS 

This paper proposes a new method of research of stability 
and the synthesis of control systems with m-inputs and n-
outputs for the output of an object based on the gradient-
speed method of Lyapunov vector functions [8,9,10,11]. The 
investigation of stability of a closed control system by 
measuring the output of the object and the solution of the 
problem of the synthesis of the controller (determining the 
elements of the gain matrix) and the observer (calculating the 
elements of the matrix of the observing device) are both 

based on the direct Lyapunov [12,13,14]. The proposed 
gradient-velocity method of Lyapunov vector functions in 
the study of the control system with m-inputs and n-outputs 
on the object output eliminates complex and ambiguous 
calculations and transformations and allows you to determine 
the region of choice of parameters of the controller and the 
observer, providing the desired (desired) transition 
characteristics closed system. 

III. RESULTS 

Let the control system at the exit of the object be 
presented in the form: 
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Us (1) and (2) can be expanded as 
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We find the condition of robust asiptotic stability of the 
system (3) by the gradient-velocity method of Lyapunov 
vector functions [8,9]. 

From (3) we find the components of the gradient vector 
for Lyapunov vector functions.  
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(4) we decompose the velocity vector to 

coordinates
),...,,...,( 11 nnxx 
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The total time derivative of Lyapunov functions is 
defined as the scalar product of the gradient vector (4) and 
the velocity vector (5) 
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From (6) it follows that the total time derivative of 
Lyapunov vector functions is a sign-negative function. From 
(4), the Lyapunov function can be represented as: 
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The condition for the existence of a Lyapunov function is 
defined by the inequalities: 
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The system of inequalities (8) and (9) is a condition for 
the robust stability of the dynamic compensator. Condition 
(8) allows for robust stability of the system when controlled 
by a state vector. Suppose we have a closed control system 
of desired transients with m-inputs and n-outputs with 
matrix: 
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The task is to determine the coefficient of the regulator 

(elements of the matrix K) such that the elements of the 
matrix of a closed system have the specified values. 

We study the stability of a system with given values of 
the coefficients by the gradient-speed method of Lyapunov 
vector functions. 

For a system with given parameters, write the equations 
of state in expanded form: 
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From (10) we find the components of the gradient vector 
of Lyapunov vector functions 
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 (3) we decompose the velocity vector to coordinates: 
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The total derivative of the Lyapunov vector-function with 
respect to time is determined by the expression: 
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From (13) it follows that the total time derivative of 
Lyapunov vector functions is a sign-negative function. 

From (11), the Lyapunov function can be represented in 
scalar form: 
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The condition for the existence of Lyapunov vector 
functions for system (10) is described by the system of 
inequalities: 
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We can equate inequalities (8) and (15) for system (1) 
and (2) to have the specified properties and from there find 
the required values of the coefficients of the matrix k: 
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From this n-system of algebraic equations (17) we can 
find the values of the elements of the matrix k 
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System (9) can be rewritten in the form: 

nknidaсl ik

n

j

ikjkij ,...,1;,...,1,02
1




  (18) 

Solving the system (18) with respect to the coefficients 
),...,1;,...,1; linjlij 
, we can find the boundary values for 

the coefficients of the observing device. 

Suppose, for simplicity, we assume that the matrices B, L 

and C have dimension, respectively 1,1,1  lln , and the 
matrices A and D are given a controlled canonical form. 
Then the equations can be rewritten in the form: 
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From (19), the boundary values of the coefficients  
),...,1;( lili 
 of the observability matrix will be determined: 
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Thus, the problem of synthesizing control systems with 
m-inputs and n-outputs by the object output is solved by the 

gradient-speed method of Lyapunov vector functions 
completely. The calculation of the coefficients of the 
controller and the observing device according to the desired 
characteristic of the system (10) is presented as a solution of 
the system of algebraic equations (17) and (18). 

IV. CONCLUSIONS 

The known methods of synthesis of the closed-loop 
control systems for the object's output are based on the 
model control of the object's output. The calculation of the 
matrix elements of the regulator and the observer requires 
certain regulated transformations - complex and ambiguous 
calculations of the roots of the characteristic equation of a 
closed system. The roots of the characteristic polynomial of a 
closed system are obtained by combining the roots of the 
system with a model controller and the eigenvalues of the 
state observer. 

The gradient-speed method of Lyapunov vector functions 
allows one to solve the problem of m-input and n-output 
control systems directly using the elements of the matrix of 
the controller object and the observer. 

The approach is proposed to determine the range of 
changes in the object parameters, a regulator, and an 
observer that provides the specified (desired) transient 
characteristics of a closed system. 
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