
1

A Survey on Real Time Database
Krishna Shah1, Devansh Jani2

Department of Computer Engineering,
Institute of Technology, Nirma University

17mcec15@nirmauni.ac.in1,17mcec07@nirmauni.ac.in2

Abstract

Real time database supports variety of applications as
per their performance and response time. Data management
in Real time system has been maintained to produce fast
turnaround query time. In this paper will explain what are real
time database applications and its characteristics in respect
with data and its consistency. It further explains transactions
and scheduling. Policy to sustain against deadlock is explained
and measures that results in to concurrency are explained and
comparison is shown.

Keywords

Real−time,Database,Acidproprieties,Data,Consiste-
ncy,absolute−validity,Relative−consistency,
Deadlock,Transaction,Concurrency,Scheduling,Pess-
imistic,Optimistic,Speculative

I. INTRODUCTION

Many database needs large amount of storage which must
provide features and process this data to get successful oper-
ation and for such large data we need database management
system. Real time database is a database system that handles
the work-load with constantly changing data. They are dy-
namic in nature and used for real time computation such as
banking,stock market and many more.
Some Characteristics of real time system can be as
Time Constraints,Deadlines, Correctness Criterion, Safety-
Criticality, Concurrency, Task Criticality,Custom-Hardware,
Stability, Exception-Handling.

A. Basic Model of Real time System

The Figure 1 shows the basic model of real time system in
terms of blocks. It has sensors which converts physical char-
acteristics of its environment into electrical signals.Actuator is
a device which inputs from output interface of computer and
converts them in to electrical signals. Interface unit is normally
commands received from the CPU and are delivered to actuator
The interface takes care of buffering and handshake control.

II. REAL TIME DATABASE

Real-Time Database System are database systems that are
made to satisfy certain real time system constraints such as
time and priority.Factors to tune traditional DB:
Schedulability: The ability of tasks to meet all hard deadlines.

Fig. 1. Basic Model of Real time System

Response time: The worst-case system response time to events
Stability in overload: The system meets critical deadlines
even if all deadlines cannot be met Timing constraints: e.g.
deadline is a timing constraint associated with the transaction.
Criticalness: It measures how critical it is that a transaction
meets its timing constraints. Criticalness is a different concept
from deadline as a transaction may have a very tight deadline
but missing it may not cause harm to the system. Resource
requirements: Number of I/O operations to be executed. Ex-
pected execution time: Estimate or experimentally measured
value of worst case execution time. Data requirements: Read
sets and write sets of transactions. Periodicity: If a transaction
is periodic, what its period is. Time of occurrence of events:
In witch point in time a transaction issues a read or write
request.Other semantics - Transaction type (read-only, write-
only, etc.).

Some examples of real time database are Telecommunica-
tion systems they are firm real time databases, routers and
network management system database are also included in the
same category. Control systems in nuclear power plants are an
example of Hard real time database system, as late retrieval of
critical data can cause hazardous effects. Multimedia servers
for real-time streaming are based on soft real time databases
even if a frame is not retrieved or retrieved late it won’t affect
the performance much.[3] E-commerce and e-business, stock
market and financial services use hard real time databases as
there is a possibly of a huge monitory loss. Web-based data
services use soft real time databases.
Response-Time Predictability has some Hurdles,such as
Blocking and transaction, Requirement to meet the ACID
properties, Unpredictability of disk access time and page
faults, Data dependency of transaction executions, Dependence
of the transaction’s execution sequence on data values Data
and resource conflicts, Dynamic paging and I/O, Transactions
abort and the resulting rollbacks and restarts, Communication

2

delays and site failures on distributed databases [8]

Techniques to improve response time: Use main memory
database, Need worst-case predictability, Use real memory
addressing, Best effort in scheduling,

ACID Properties Atomicity: A Transaction is done ei-
ther completely or not at all(Partial transactions are al-
lowed) Consistency: Transactions are executed in a given
sequence(Aperiodic, sporadic) Isolation: The actions of a
transaction are not visible to any other transactions until it
is committed(Not required!) Durability: The actions of a
database are permanent(Not all real time data is durable) In
real-time databases, relaxing ACID depends on application
semantics.[2]

They differ in three ways majorly focus on : 1)Temporal
data Temporal data is type of data who’s validity is lost after a
predefined time interval. Either the data is updated with newer
version of data or the data is archived or discarded. An example
of temporal data is temperature sensing service with multiple
sensor nodes which send temperature information at specified
time intervals. As soon as new data is retrieved the old
temperature data is discarded modifying the RTDB. Another
example of Temporal Data is Bit-coin price database. As soon
as new price quotations come in, data of the previous prices
becomes obsolete[5]. 2) Timing Constraints on Database
Operations: Transactions and tasks are very similar. They both
are scheduled similarly and are basically a unit of work. But
a differentiating factor is that a transaction requires data to be
in exclusive mode compared to a real time task, moreover a
real time task could be predictable while a real time database
operation is not a predictable operation as there are multiple
dependencies on the executing transaction. 3) Performance
metric: In a traditional database system number of multiple
concurrent transactions matter the most, while in real time
database response time matter the most.

A. Real-Time Database Application Design Issues

Time taken to fetch data from secondary storage device is
much more than time to fetch data from primary memory or
cache. This makes it difficult to predict predict the response
time. Another important factor is rollback and dependencies
of on transaction on another, these two factors also affect the
predictability of a transaction.[7]

B. Data and Consistency

Maintaining logical consistency of a database is not only an
important task RDBMS has to maintain temporal as well as
timing properties of a transaction. Temporal consistency has
two requirements to be satisfied they are as follows:

1) Absolute Validity: It is valid only between absolute
points in time. It’s used to maintain consistency of environment
with real time database. Denote a temporal data item in
RTDB by d: (value, avi, timestamp) Here, dvalue denotes the
current value of d, dtimestamp denotes the time when the d
was updated, davi denotes d’s absolute validity interval, i.e.,
length of time interval following dtimestamp during which d is
considered to have absolute validity.[4] Condition for Absolute

Validity: A data item d is absolutely valid, iff (Current time |
dtimestamp) < davi

2) Relative Consistency: Relative consistency is used to
derive another dependent data from temporal data. Assume
a data d in R (relative consistency set) d has a correct state if
dvalue is logically consistent – satisfy all integrity constraints
d is temporally consistent relative consistency: For arbitrary d’
in R, |dtimestamp − dFLtimestamp| Rrvi Each R is associated
with a relative validity interval (rvi)

Example: Relative Consistency Let us assume that the
current fuel level is 30 litres at time 100 msec and the distance
travelled is 10 kilometers. Also assume that the avi is 20 msec.
dfuel (30 litres, 20 msec, 100 msec) ddistance (10 kms, 20
msec, 110 msec) We read these two values from two different
sensors. So, there will be a difference or delay in data arrival
at the controlling system. If rvi is 15 msec for example, then
the given data are relatively consistent. [4]

III. TRANSACTIONS IN REAL-TIME DATABASE SYSTEM

A. Scheduling in Transaction Processing

Hard deadline transactions: Cause catastrophic results if
missed.
Soft deadline transactions: Does not cause havoc but system
performance degrades.
Firm deadline transactions It causes undesired results, but
they are not as catastrophic as Hard Deadline systems.

B. Types of transactions:

Write only: These are the transactions which write the
state of environment into the real time database. Update:
These transactions retrieve new data items from controllers
or users and update the existing rel time database. Read only:
These transactions fetch data items from the existing real time
database and provide them to the users or controlling system.
Problems encountered in real time transactions:
wasted restart: When a high priority transaction kills a low
priority transaction and later at some time the high priority
transaction fails missing its deadline, this is called as wasted
restart. [1]
wasted wait: It occurs when a low priority transaction waits
for a high priority transaction to commit and finally after
some time the high prior transaction is killed as it misses it’s
deadline.
Wasted execution: It occurs in validation phase when a low
priority transaction is restarted because of an unfinished higher
priority transaction. Two phase is the method which suffers
the most due to the problem of wasted restart and wait, while
the Optimistic methods suffer due to unnecessary restart and
wasted execution. [1]

C. Scheduling in Transaction Processing

Static table-driven approaches: Static table-driven ap-
proaches are scheduled at the very beginning and a explicit
schedule is constructed, but are used at run time to start task
execution.

3

Static priority-driven preemptive approaches: Tasks are
ran on the basis of highest priority first. No schedule is made
in Static priority-driven preemptive approach.

Dynamic planning-based approaches: Feasibility is the
main criteria in this approach. At the run time feasibility of
a transaction is checked and accordingly it is executed. If not
found feasible the transaction is discarded.

D. Scheduling Deadlocks

Deadlocks occur even in real time databases. Deadlocks are
a very hazardous condition in real time databases as they could
delay critical transactions. Aborting a transaction is also a very
costly operation considering real time databases. Five deadlock
resolution policies for real time database: Policy 1: Abort all
the transactions invoking deadlock detection. Policy 2: Abort
the transaction causing the delay in execution(tardy transac-
tion). If there does not exists any delay causing transaction,
abort the furthest deadline transaction. These operations could
be completed using tracing deadlock cycle Policy 3: Abort the
transaction causing the delay in execution(tardy transaction).
If there does not exists any delay causing transaction, abort
the earliest deadline transaction. These operations could be
completed using tracing deadlock cycle Policy 4: Abort the
transaction causing the delay in execution(tardy transaction).
If there does not exists any delay causing transaction, abort the
least critical transaction. These operations could be completed
using tracing deadlock cycle Policy 5: Abort the transaction
which is not feasible and is also non critical. If transactions
are feasible then abort the non critical transaction. Remaining
execution time of the transaction must be known. And total
execution time of each transaction should be known at the
beginning.

IV. CONCURRENCY CONTROL

Some of the known concurrency Control Protocols are
as mentioned as follows. Validation, Locking, Multiversion,
Time-stamping. They all are created to enforce serializability.
Although these protocols are good working for traditional
systems, they need to be modified a little, to prevent, detect
and respond to collisions. [4] Concurrency Control in Real-
Time Databases can be obtained from the following methods:
Pessimistic Methods, Timestamp Ordering Methods, Serializa-
tion Graph Testing, Locking Methods, Optimistic Methods,
Backward Validation Methods, Forward Validation Methods
and Serialization Graph Testing.

A. Pessimistic Concurrency Control

When concurrent operations are performed on real time
database care should be taken that locks are used properly.
Some of the locking mechanism used in RTDB used are: Two-
Phase Locking (2PL) Priority is given to the lock operation
and locking operation are performed before unlock operation in
shrinking or expanding phase. 2PL still suffers from deadlocks.
Priority inversion could be use. Two-phase locking + A Priority
Assignment Scheme, such as RM or EDF is used.

Locking Methods are based on 2PL :
2PL Wait Promote

2PL High Priority
2PL Conditional Priority Inheritance
Priority Ceiling Protocol

2PL Wait Promote: The shortcomings of the pure 2PL
protocol.TR is the requesting transaction and transaction TH
is holding the data item.
/* pri(T) denotes priority of transaction
T*/

if pri(TR)> Pri(TH) then
TR waits;
TH inherits priority of TR;

else
elseTR waits;

end if
[1]

2PL High Priority - pseudo code: If there is no conflict
then it allowed access but if priority of Requesting is greater
than holding then abort holding data item else Requesting
waits for the lock.
Pseudo code:

if i then
f (no conflict) thenTR accesses D

else
elseif (Pri(TR)>Pri(TH)) abort TH

else
elseTR waits for the lock

end if
Priority Ceiling Protocol : Access to the data is granted to

a transaction if the priority of the transaction requesting is high
then the read write ceiling of all the data objects. Read Ceiling:
It is the priority value of the highest transaction that writes to
the database. Absolute Ceiling: The highest priority transaction
reading or writing the data object. Read-Write Ceiling: It is
defined dynamically at the run time.

B. Optimistic Concurrency Protocols

Optimistic Concurrency Protocols assumes less conflicts.As
there are less conflicts it may results in to aborting trans-
actions.Three phases to an optimistic concurrency control
method:

Read phase: Reads data from database and stores in local
variable Validation phase: Committed transactions are exe-
cuted Write phase: Changes made in transaction are stored
in database.

Few important optimistic concurrency control protocols:
Forward OCC: In this protocol, transactions read and update
data items freely, storing their updates into a private work-
place.Before a transaction is allowed to commit, it has to pass
a validation test. A transaction is aborted, if it does not pass
the validation test. This guarantees the atomicity and durability
properties.

OCC Broadcast Commit: In OCC Broadcast Commit
(OCC-BC) protocol, when a transaction commits, it notifies to
all other currently running transactions and when any conflicts

4

Fig. 2. Comparison of Concurrency Control Protocols

are detected, then the transaction carrying out checks it and
aborts and restart the transaction.

OCC-Sacrifice: This protocol considers the priorities of
transactions. It is checked that once it reaches validation stage
it checks for conflicts with the currently executing transactions
and if that stage problem occurs then that a transaction may be
sacrificed in place of another transaction that is sacrificed later
and leads to wastage of computations and deadline misses.[6]

C. Speculative Concurrency Protocol

Speculative Concurrency protocol overcomes a weakness of
the OCC protocols as they check the conflicts at every read
and write operations. Whenever they detect a conflict, a new
version which is known as shadow version is generated of each
of the conflicting transactions.As it creates version for Primary
version it executes as any transaction under an OCC protocol
and for Shadow version it executes under a pessimistic protocol
where locking and restarts are focused.It maintains the version
where there is no conflict and when conflict occurs in shadow
it blocks the transaction and of primary commits then shadow
is discarded.And when primary aborts, shadow works under
OCC.[4]

D. Comparison of Concurrency Control Protocols

we can compare three protocols as per the figure ?? shown
here.Initially all the protocols result in identical performance.
When there are low conflicts OCC is the best protocol. When
there is high load pessimistic protocol outperforms OCC.
SCC performs better compared to both OCC and pessimistic
protocols, when transactions have tight deadlines and the load
is moderate.

V. SUMMARY

The area of real-time database systems has evolved
greatly over the relatively and it result of the demand to
apply database technology has made it for short time of its
existence.The amount of data handled by real-time systems
is increasing as a structured and systematic approach to
manage data.This approach combines techniques from the
database systems community with the existing methods for
real-time computing.This paper gives idea about transaction
and scheduling of real time database.For concurrency protocol
it is important to achieve transaction deadlines and certain

TABLE I
REAL-TIME VS GENERAL PURPOSE DATABASES

Real time Database General Purpose Databases
Persistent data (values do not be-
come obsolete)

Persistent + Temporal data (val-
ues become obsolete if deadline
missed)

Static data items Dynamic and Static data items
Consistent transactions maintain
valid data in databases

Data validity is highly depend on
the time

Logically correct and consistent Logically correct and consistent
correct Time correctness

No timing constraints Timing constraints must be fol-
lowed

Logical Consistency Logical consistency, Temporal con-
sistency and External consistency

To be minimized to handle more
transactions

Response time requirements come
from external world

Must be satisfied for every transac-
tion

May be relaxed in few cases

Number of transactions completed
per unit time

Number of transactions missing
their deadlines per unit time

protocols are discussed such as 2PL which has certain
drawbacks so 2PL-WP and 2PL-HP are used to overcome
problems.Optimistic Protocols basically allows unrestricted
data usage and works under low workload.Hence summarizing
few points which are mentioned below: There exists no perfect
Real time Database which satisfies all the real time database
constraints. Moreover, To build a real time database it is
costly as per user specifications. Limited indexing facilities
are provided in real time databases
A real time database uses heavy system resources
Real time systems have a low multitasking capability
They are highly complex
Superior memory management is required in real time
database systems
We need to build a task specific real time database system. A
RTDB cannot be used as a generalized RTDB.

REFERENCES

[1] Saud Ahmad Aldarmi. Real-time database systems: concepts and design.
REPORT-UNIVERSITY OF YORK DEPARTMENT OF COMPUTER SCI-
ENCE YCS, 1998.

[2] Raul Barbosa. An essay on real-time databases. SE-412, 96, 2007.
[3] Ben Kao and Hector Garcia-Molina. An overview of real-time database

systems. In Real Time Computing, pages 261–282. Springer, 1994.
[4] Jan Lindström. Real time database systems. Wiley Encyclopedia of

Computer Science and Engineering, 2008.
[5] G. Ozsoyoglu and R. T. Snodgrass. Temporal and real-time databases:

a survey. IEEE Transactions on Knowledge and Data Engineering,
7(4):513–532, Aug 1995.

[6] Mukesh Singhal. Issues and approaches to design of real-time database
systems. SIGMOD Rec., 17(1):19–33, March 1988.

[7] Sang H. Son. Research trends and issues in real-time database systems.
[8] Özgür Ulusoy. Research issues in real-time database systems: Survey

paper. Information Sciences, 87(1):123 – 151, 1995.

